Thorium nuclear reactors are not the answer

It doesn’t solve the proliferation problem. It doesn’t solve the waste problem, either. So every nuclear reactor, no matter what type, creates fission products, which are highly radioactive materials, some short-lived, some long-lived

This is highly radioactive waste. If you look at Oak Ridge’s current evaluation, they say you have to condition this waste, you have to convert the fluorides, and then you have to have a deep geologic repository.

What’s in this waste? Cesium-137 and strontium-190, hundreds of years, just like today’s reactors. Cesium-135 and iodine-129, millions of years half-life. Technetium-99, 200,000 years. 

Is Thorium A Magic Bullet For Our Energy Problems?  NPR May 4 2012, “……..With me is Dr. Arjun Makhijani. He is president of the Institute for Energy and Environmental Research. He’s here in our D.C. studios. Do you agree with Richard Martin that we missed out on thorium? If we had started out with thorium, would be in better shape now?

ARJUN MAKHIJANI: I don’t think so. I think the problems of nuclear power, fundamentally, would remain. The safety problems would be different. I mean, Mr. Martin and proponents of thorium are right in the sense that the liquid fuel reactor has a number of safety advantages, but it also has a number of disadvantages.

For instance, this breeder reactor lost out with the sodium-cooled breeder, in the incident that Mr. Martin mentioned, because the liquid – the molten sodium reactor, the sodium-cooled reactor has a much better breeding ratio. It produces a lot more excess fuel that you can then take to the next reactor.

In this reactor, because thorium is not a fissile material, you actually need either plutonium or enriched uranium to start it. In fact, this reactor that operated in Oak Ridge for a few years, it actually started up in 1964, it never used thorium to breed uranium-233.

Some uranium-233 was put into the reactor at one point, but it had been made in another reactor. It hadn’t been made in that reactor. It operated with enriched uranium, some plutonium and some uranium-233, but not made in that reactor.

So what are the problems? The problem is that with this particular reactor, most people will want a reprocessing, that is separating the fissile material on-site. so you have a continuous flow of molten salt out of the reactor. You take out the protactinium-233, which is a precursor of uranium, and then you put the uranium back in the reactor, and then you keep it going.

But if you look at the Princeton University paper on thorium reactors from a few years ago, you’ll see that this onsite reprocessing allows you to separate protactinium altogether. Now, the U.S. wouldn’t do it, but if you were a county without nuclear materials and had a reprocessing plant right there, you’d separate the protactinium-233, you’d get pure uranium-233, which is easier to make bombs with than plutonium.

I can read you the quote from the Princeton University paper, but I won’t bother.

FLATOW: So you’re saying that it doesn’t solve the safety issues.

MAKHIJANI: It doesn’t solve the proliferation problem. It doesn’t solve the waste problem, either. So every nuclear reactor, no matter what type, creates fission products, which are highly radioactive materials, some short-lived, some long-lived, to make energy.

With the present reactors, we create about a ton per reactor, per year. If you have a more efficient reactor, at least you will create half a ton, probably eight-tenths of a ton, nine-tenths of a ton. This is highly radioactive waste. If you look at Oak Ridge’s current evaluation, they say you have to condition this waste, you have to convert the fluorides, and then you have to have a deep geologic repository.

What’s in this waste? Cesium-137 and strontium-190, hundreds of years, just like today’s reactors. Cesium-135 and iodine-129, millions of years half-life. Technetium-99, 200,000 years. Now, Mr. Martin says that you don’t have to worry about Technetium-99 because it’s used in medical practice on millions of people.

Now, Technetium-99 is radioactive, and it’s used not because it’s risk-free, but because there’s some need that balances off the risk according to the doctor, gives some benefit to the person. Technetium-99, like other radioactive materials, inside your body, creates a cancer risk.

So you ask: Well, how much cancer risk does medical use of radiation in the United States create every year? If you use National Academy’s coefficients for cancer risk, the answer would be about 90,000 cancers…….

MAKHIJANI: Yeah. But first let me thank Mr. Martin and say I’ll send you my book, “Carbon-free, Nuclear-free: Roadmap for U.S. Energy Policy,” since I have your book from your publisher……

MAKHIJANI: I have a favorite molten salt reactor. My reactor is free. It’s in the sky, 93 million miles away. You can store its energy in molten salt. It is being done today. You can generate electricity for 24 hours a day. The – so the impermanency problem has been solved.

I don’t know why – I’m still trying to understand why photovoltaics are still so expensive in this country. But you know Germany – I was at a seminar yesterday at the Heinrich Boll Foundation about the Germany decision to get out of nuclear. They’re going to have a completely renewable system maybe by the time thorium reactors become commercial.

This isn’t going to happen tomorrow, even if you pour money into it. It would take 10 years for the NRC to understand and write regulations for this thing. And it would take 10 years before that to build the reactors, do the experiments and produce the data so you can regulate this thing, because all of our regulation is based on light water reactors.

Six years ago, I might have agreed with Mr. Martin that maybe, you know, impermanency is a big problem. Somebody said you haven’t looked. You really should do a study. So I did an honest, unbiased look, not thinking we could do renewable energy. And I found out that my hunch was wrong: We can do 100 percent renewable energy, and the Germans are actually aiming for it.

You know, they have an export surplus with China, and we have a huge export deficit. Maybe they know something we don’t know………

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s